李刚:男,1978年2月生于山东省新泰市,理学博士,九三学社社员。现为91论坛
数学与统计91论坛
教授,硕士生导师,91论坛
特聘教授, 2018年获91论坛
优秀研究生指导教师荣誉称号。研究兴趣包括:偏微分方程数值计算、计算流体力学。专注于双曲守恒律、平衡律方程的高精度数值方法研究。
 学习与进修经历:
 2008.9—2011.6 南京大学数学系计算数学专业,理学博士。 
 2000.9—2003.6 厦门大学数学系计算数学专业,理学硕士。 
 1996.9—2000.6 曲阜师范大学数学系数学教育专业,理学学士。
 工作经历:
 2017.11—迄今        91论坛
,教授 
 2012.12—2017.10     91论坛
,副教授
 2005.11—2012.11     91论坛
,讲师
 2003.7—2005.10      91论坛
,助教 
 2017.9.1—2018.3.1   ***,访问学者 
 指导的研究生名单:
 
  
   
    年级  | 
    硕士研究生  | 
   
   
    2014级  | 
    王臻臻(获研究生国家奖学金), 韩笑  | 
   
   
    2015级  | 
    姚中华,刘雨  | 
   
   
    2016级  | 
    于海燕  | 
   
   
    2017级  | 
    王秀芳(获研究生国家奖学金)  | 
   
   
    2018级    | 
    李姣姣(获研究生国家奖学金)  | 
   
   
    2019级    | 
    张莹娟  | 
   
   
    2020级    | 
    郭威,陈子铭  | 
   
   
    2021级    | 
    张志壮,周翔宇  | 
   
  
 
  
 主持的科研项目:
 
  
   
    序号  | 
    名称  | 
    项目来源  | 
    负责人  | 
    执行 期限  | 
    资助 金额  | 
    进展 情况  | 
   
   
    1  | 
    数值天气预报中可压缩流体的高效保正间断Galerkin方法  | 
    国家自然科学基金 面上项目  | 
    李刚  | 
    2018.1- 2021.12  | 
    48万  | 
    结题  | 
   
   
    2  | 
    浅水中污染物模型的保正WENO格式及其快速算法 (No. 11201254)  | 
    国家自然科学基金 青年项目  | 
    李刚  | 
    2013.1-2015.12    | 
    22万  | 
    结题  | 
   
   
    3  | 
    污染物输运模型的高精度数值方法研究(No. J12LI08)  | 
    山东省高等学校科技计划项目  | 
    李刚  | 
    2012.5-2014.12  | 
    5万  | 
    结题  | 
   
  
 
 参与的科研项目:
 
  
   
    序号  | 
    名称  | 
    项目来源  | 
    职责  | 
    执行 期限  | 
    资助 金额  | 
    进展 情况  | 
   
   
    1  | 
    基于数据同化的流域尺度土壤水/地下水流耦合的数值模拟(No. 41171183)    | 
    国家自然科学基金 面上项目    | 
    学术骨干 2/8    | 
    2012.1-2015.12      | 
    56万    | 
    结题    | 
   
   
    2  | 
    不规则横截面明渠流的高效保正ADER-DG 方法(ZR2021MA072)  | 
    山东省自然科学基金委员会  | 
    学术骨干 2/6    | 
    2022.1-2024.12    | 
    9万  | 
    在研  | 
   
  
 
  主要学术论文:
 [1] G. Li,J. Qiu. Hybrid weighted essentially non-oscillatory schemes with different indicators. Journal of Computational Physics  229 (2010) 8105-9129. (二区SCI检索,影响因子: 2.369)
 [2] C. Lu, G. Li. Simulations of shallow water equations by finite difference WENO schemes with multilevel time discretization. Numerical Mathematics: Theory, Methods and Applications  4 (2011) 505-524. (SCI检索, 影响因子: 0.714) 
 [3] G. Li, C. Lu, J. Qiu. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. Journal of Scientific Computing  51 (2012) 527-559. (二区SCI检索,影响因子: 1.7)  
 [4] G. Li(*), J.M. Gao, Q.H. Liang. A well-balanced weighted essentially non-oscillatory scheme for pollutant transport in shallow water. International Journal for Numerical Methods in Fluids 71 (2013) 1566-1587. (四区SCI检索, 影响因子: 1.244) 
 [5] G. Li, J. Qiu. Hybrid WENO schemes with different indicators on curvilinear grids. Advances in Computational Mathematics  40 (2014) 747-772. (二区SCI检索, 影响因子: 1.316)
 [6] G. Li(*), V. Caleffi, J. M. Gao. High-order well-balanced central WENO scheme for pre-balanced shallow water equations. Computers & Fluids 99 (2014) 182-189. (三区SCI检索, 影响因子: 2.313) 
 [7] G. Li(*), V. Caleffi, Z.K. Qi. A well-balanced finite difference WENO scheme for shallow water flow model. Applied Mathematics and Computation 265 (2015) 1-16. (二区SCI检索, 影响因子: 1.738)  
 [8] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. Journal of Scientific Computing 67 (2016) 493-513. (二区SCI检索, 影响因子: 1.899) 
 [9] G. Li, X.L. Xing. High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics 316 (2016) 145-163. (二区SCI检索, 影响因子: 2.744)  
 [10] V. Caleffi, A. Valiani, G. Li. A comparison between bottom-discontinuity numerical treatments in the DG framework. Applied Mathematical Modelling, 40 (2016) 7516-7531.  (一区SCI检索, 影响因子: 2.350) 
 [11] Z.Z. Wang, G. Li(*), O. Delestre. Well-balanced finite difference WENO schemes for the blood flow model. International Journal for Numerical Methods in Fluids,  82 (2016) 607-622. (四区SCI检索, 影响因子: 1.652)
 [12] X. Han, G. Li(*). Well-balanced finite difference WENO schemes for the Ripa model. Computers & Fluids, 134-135 (2016) 1-10.  (三区SCI检索, 影响因子: 2.313) 
 [13] Z.H. Yao, G. Li(*), J.M. Gao.  A high order well-balanced finite volume WENO scheme for the blood flow model in arteries. East Asian Journal on Applied Mathematics 7(4) (2017) 852-866. (四区SCI检索,影响因子: 0.434) 
 [14] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics 352 (2018) 445-462. (二区SCI检索, 影响因子: 2.744)
 [15]S.G. Qian, G. Li, X.Q. Lv, F.J. Shao. An efficient high order well-balanced finite difference WENO scheme for the blood flow model. Advances in Applied Mathematics and Mechanics 10(1) (2018) 22-40. (四区SCI检索, 影响因子: 0.763) 
 [16] S.G. Qian, Y. Liu, G. Li(*), L. Yuan. High order well-balanced discontinuous Galerkin methods for Euler equations at isentropic equilibrium state under gravitational fields. Applied Mathematics and Computation 329(15) (2018) 23-37. (二区SCI检索, 影响因子: 1.738)  
 [17] G. Li(*), O. Delestre, L. Yuan. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries. International Journal for Numerical Methods in Fluids 86(7) (2018) 491-508. (四区SCI检索, 影响因子: 1.652) 
 [18] G. Li,  Y.L. Xing.   Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Computers and Mathematics with Applications 75(6) (2018) 2071-2085.   (二区SCI检索, 影响因子: 2.434)
 [19] S.G. Qian, G. Li, F.J. Shao, Y.L. Xing. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 115 (2018) 172-184. (二区SCI检索, 影响因子: 3.221) 
 [20] G. Li(*), L.N. Song, J.M. Gao. High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations. Journal of Computational and Applied Mathematics, 340 (2018) 546-560. (二区SCI检索,影响因子: 1.357)
 [21]S.G. Qian, G. Li(*), F.J. Shao, Q. Niu. Well-balanced central WENO schemes for the sediment transport model in shallow water. Computational Geosciences, 22(3) (2018) 763-773. (四区SCI检索,影响因子: 0.434)   
 [22] S.G. Qian, F.J. Shao, G. Li(*). High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Computational and Applied Mathematics 37(5) (2018) 5775-5794. (三区SCI检索,影响因子: 0.863) 
 [23] X.F. Wang, H.Y. Yu, G. Li(*), J.M. Gao. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions   Applied Mathematics and Computation 359 (2019) 132-147. (二区SCI检索, 影响因子: 1.738)  
 [24]X.F. Wang, G. Li(*),S.G. Qian, J.J. Li, Z. Wang. High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry. Applied Mathematics and Computation 363 (2019) 124587. (一区SCI检索, 影响因子: 3.092)  
 [25] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao,  Q. Niu. A high-order well-balanced discontinuous Galerkin method based on the hydrostatic reconstruction for the Ripa model. Advances in Applied Mathematics and Mechanics 12 (6) (2020)  1416-1437.
 [26] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao. High-order well-balanced finite volume WENO schemes with conservative variables decomposition for shallow water equations. Advances in Applied Mathematics and Mechanics  13(4)  (2021) 827-849. 
 [27] G. Li, J.J. Li, S.G. Qian, J.M. Gao. A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Applied Mathematics and Computation 395(15) (2021) 125848. 
 [28] Y.J. Zhang, G. Li, S.G. Qian, J.M.  Gao. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws. Computational and Applied Mathematics  40 (2021) 139. 
 联系方式:
 办公地点:青岛市市南区宁夏路308号,91论坛
浮山校区励行楼(西七教)222室
 电话:  15215322338  
 QQ号: 158043650
 E-mail:[email protected] 
 李刚:男,1978年2月生于山东省新泰市,理学博士,九三学社社员。现为91论坛
数学与统计91论坛
教授,硕士生导师,91论坛
特聘教授, 2018年获91论坛
优秀研究生指导教师荣誉称号。研究兴趣包括:偏微分方程数值计算、计算流体力学。专注于双曲守恒律、平衡律方程的高精度数值方法研究。
 学习与进修经历:
 2008.9—2011.6 南京大学数学系计算数学专业,理学博士。 
 2000.9—2003.6 厦门大学数学系计算数学专业,理学硕士。 
 1996.9—2000.6 曲阜师范大学数学系数学教育专业,理学学士。
 工作经历:
 2017.11—迄今        91论坛
,教授 
 2012.12—2017.10     91论坛
,副教授
 2005.11—2012.11     91论坛
,讲师
 2003.7—2005.10      91论坛
,助教 
 2017.9.1—2018.3.1   美国俄亥俄州立大学数学系,访问学者 
 指导的研究生名单:
 
  
   
    年级  | 
    硕士研究生  | 
   
   
    2014级  | 
    王臻臻(获研究生国家奖学金), 韩笑  | 
   
   
    2015级  | 
    姚中华,刘雨  | 
   
   
    2016级  | 
    于海燕  | 
   
   
    2017级  | 
    王秀芳(获研究生国家奖学金)  | 
   
   
    2018级    | 
    李姣姣(获研究生国家奖学金)  | 
   
   
    2019级    | 
    张莹娟  | 
   
   
    2020级    | 
    郭威,陈子铭  | 
   
   
    2021级    | 
    张志壮,周翔宇  | 
   
  
 
  
 主持的科研项目:
 
  
   
    序号  | 
    名称  | 
    项目来源  | 
    负责人  | 
    执行 期限  | 
    资助 金额  | 
    进展 情况  | 
   
   
    1  | 
    数值天气预报中可压缩流体的高效保正间断Galerkin方法  | 
    国家自然科学基金 面上项目  | 
    李刚  | 
    2018.1- 2021.12  | 
    48万  | 
    结题  | 
   
   
    2  | 
    浅水中污染物模型的保正WENO格式及其快速算法 (No. 11201254)  | 
    国家自然科学基金 青年项目  | 
    李刚  | 
    2013.1-2015.12    | 
    22万  | 
    结题  | 
   
   
    3  | 
    污染物输运模型的高精度数值方法研究(No. J12LI08)  | 
    山东省高等学校科技计划项目  | 
    李刚  | 
    2012.5-2014.12  | 
    5万  | 
    结题  | 
   
  
 
 参与的科研项目:
 
  
   
    序号  | 
    名称  | 
    项目来源  | 
    职责  | 
    执行 期限  | 
    资助 金额  | 
    进展 情况  | 
   
   
    1  | 
    基于数据同化的流域尺度土壤水/地下水流耦合的数值模拟(No. 41171183)    | 
    国家自然科学基金 面上项目    | 
    学术骨干 2/8    | 
    2012.1-2015.12      | 
    56万    | 
    结题    | 
   
   
    2  | 
    不规则横截面明渠流的高效保正ADER-DG 方法(ZR2021MA072)  | 
    山东省自然科学基金委员会  | 
    学术骨干 2/6    | 
    2022.1-2024.12    | 
    9万  | 
    在研  | 
   
  
 
  主要学术论文:
 [1] G. Li,J. Qiu. Hybrid weighted essentially non-oscillatory schemes with different indicators. Journal of Computational Physics  229 (2010) 8105-9129. (二区SCI检索,影响因子: 2.369)
 [2] C. Lu, G. Li. Simulations of shallow water equations by finite difference WENO schemes with multilevel time discretization. Numerical Mathematics: Theory, Methods and Applications  4 (2011) 505-524. (SCI检索, 影响因子: 0.714) 
 [3] G. Li, C. Lu, J. Qiu. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. Journal of Scientific Computing  51 (2012) 527-559. (二区SCI检索,影响因子: 1.7)  
 [4] G. Li(*), J.M. Gao, Q.H. Liang. A well-balanced weighted essentially non-oscillatory scheme for pollutant transport in shallow water. International Journal for Numerical Methods in Fluids 71 (2013) 1566-1587. (四区SCI检索, 影响因子: 1.244) 
 [5] G. Li, J. Qiu. Hybrid WENO schemes with different indicators on curvilinear grids. Advances in Computational Mathematics  40 (2014) 747-772. (二区SCI检索, 影响因子: 1.316)
 [6] G. Li(*), V. Caleffi, J. M. Gao. High-order well-balanced central WENO scheme for pre-balanced shallow water equations. Computers & Fluids 99 (2014) 182-189. (三区SCI检索, 影响因子: 2.313) 
 [7] G. Li(*), V. Caleffi, Z.K. Qi. A well-balanced finite difference WENO scheme for shallow water flow model. Applied Mathematics and Computation 265 (2015) 1-16. (二区SCI检索, 影响因子: 1.738)  
 [8] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. Journal of Scientific Computing 67 (2016) 493-513. (二区SCI检索, 影响因子: 1.899) 
 [9] G. Li, X.L. Xing. High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics 316 (2016) 145-163. (二区SCI检索, 影响因子: 2.744)  
 [10] V. Caleffi, A. Valiani, G. Li. A comparison between bottom-discontinuity numerical treatments in the DG framework. Applied Mathematical Modelling, 40 (2016) 7516-7531.  (一区SCI检索, 影响因子: 2.350) 
 [11] Z.Z. Wang, G. Li(*), O. Delestre. Well-balanced finite difference WENO schemes for the blood flow model. International Journal for Numerical Methods in Fluids,  82 (2016) 607-622. (四区SCI检索, 影响因子: 1.652)
 [12] X. Han, G. Li(*). Well-balanced finite difference WENO schemes for the Ripa model. Computers & Fluids, 134-135 (2016) 1-10.  (三区SCI检索, 影响因子: 2.313) 
 [13] Z.H. Yao, G. Li(*), J.M. Gao.  A high order well-balanced finite volume WENO scheme for the blood flow model in arteries. East Asian Journal on Applied Mathematics 7(4) (2017) 852-866. (四区SCI检索,影响因子: 0.434) 
 [14] G. Li, Y.L. Xing. Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics 352 (2018) 445-462. (二区SCI检索, 影响因子: 2.744)
 [15]S.G. Qian, G. Li, X.Q. Lv, F.J. Shao. An efficient high order well-balanced finite difference WENO scheme for the blood flow model. Advances in Applied Mathematics and Mechanics 10(1) (2018) 22-40. (四区SCI检索, 影响因子: 0.763) 
 [16] S.G. Qian, Y. Liu, G. Li(*), L. Yuan. High order well-balanced discontinuous Galerkin methods for Euler equations at isentropic equilibrium state under gravitational fields. Applied Mathematics and Computation 329(15) (2018) 23-37. (二区SCI检索, 影响因子: 1.738)  
 [17] G. Li(*), O. Delestre, L. Yuan. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries. International Journal for Numerical Methods in Fluids 86(7) (2018) 491-508. (四区SCI检索, 影响因子: 1.652) 
 [18] G. Li,  Y.L. Xing.   Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Computers and Mathematics with Applications 75(6) (2018) 2071-2085.   (二区SCI检索, 影响因子: 2.434)
 [19] S.G. Qian, G. Li, F.J. Shao, Y.L. Xing. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 115 (2018) 172-184. (二区SCI检索, 影响因子: 3.221) 
 [20] G. Li(*), L.N. Song, J.M. Gao. High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations. Journal of Computational and Applied Mathematics, 340 (2018) 546-560. (二区SCI检索,影响因子: 1.357)
 [21]S.G. Qian, G. Li(*), F.J. Shao, Q. Niu. Well-balanced central WENO schemes for the sediment transport model in shallow water. Computational Geosciences, 22(3) (2018) 763-773. (四区SCI检索,影响因子: 0.434)   
 [22] S.G. Qian, F.J. Shao, G. Li(*). High order well-balanced discontinuous Galerkin methods for shallow water flow under temperature fields. Computational and Applied Mathematics 37(5) (2018) 5775-5794. (三区SCI检索,影响因子: 0.863) 
 [23] X.F. Wang, H.Y. Yu, G. Li(*), J.M. Gao. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions   Applied Mathematics and Computation 359 (2019) 132-147. (二区SCI检索, 影响因子: 1.738)  
 [24]X.F. Wang, G. Li(*),S.G. Qian, J.J. Li, Z. Wang. High order well-balanced finite difference WENO schemes for shallow water flows along channels with irregular geometry. Applied Mathematics and Computation 363 (2019) 124587. (一区SCI检索, 影响因子: 3.092)  
 [25] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao,  Q. Niu. A high-order well-balanced discontinuous Galerkin method based on the hydrostatic reconstruction for the Ripa model. Advances in Applied Mathematics and Mechanics 12 (6) (2020)  1416-1437.
 [26] J.J. Li, G. Li(*), S.G. Qian, J.M. Gao. High-order well-balanced finite volume WENO schemes with conservative variables decomposition for shallow water equations. Advances in Applied Mathematics and Mechanics  13(4)  (2021) 827-849. 
 [27] G. Li, J.J. Li, S.G. Qian, J.M. Gao. A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Applied Mathematics and Computation 395(15) (2021) 125848. 
 [28] Y.J. Zhang, G. Li, S.G. Qian, J.M.  Gao. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws. Computational and Applied Mathematics  40 (2021) 139. 
 联系方式:
 办公地点:青岛市市南区宁夏路308号,91论坛
浮山校区励行楼(西七教)222室
 电话:  15215322338  
 QQ号: 158043650
 E-mail:[email protected]